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Increased skeletal intermuscular fat is
associated with reduced exercise capacity
in cancer survivors: a cross-sectional study
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Abstract

Background: Cancer survivors experience on average a 20% reduction in peak exercise capacity (VO2 peak)
post-cancer treatment. Intermuscular fat (IMF) is a strong predictor of reduced exercise capacity in heart failure
(HF) patients; however it is unknown whether increased IMF is related to reduced VO2 peak in cancer survivors.

Methods and results: Twenty eight individuals: 14 cancer survivors > 12-months post-cancer treatment and
14 individuals without cancer were matched on age, gender, and body mass index (BMI). Participants underwent
magnetic resonance imaging (MRI) assessments of IMF within the paraspinal muscles, VO2 peak and exercise-
associated measures of left ventricular ejection fraction (LVEF). Blinded analyses were performed. Associations
between the ratio of IMF to skeletal muscle (SM) were estimated using Pearson’s partial correlation coefficients.
Individuals with cancer and non-cancer comparators were of similar age (54 ± 17 versus 54 ± 15 years; p = 1.0),
gender (5 men and 9 women, both groups), and BMI (27 ± 4 versus 26 ± 4; p = 0.57). Peak VO2 was 22% lower in
cancer survivors versus non-cancer comparators (26.9 vs 34.3 ml/kg/min; p = 0.005), and was correlated with IMF:SM in
both cancer survivors and non-cancer individuals after accounting for exercise-associated LVEF, resting LVEF, BMI, other
body fat depots, and cardiovascular disease (CVD) co-morbidities (p < 0.001 to 0.08 for all adjusted correlations).

Conclusion: Among cancer survivors that previously received anthracyclines, increased intermuscular fat is associated
with reduced VO2 peak even after accounting for exercise-associated cardiac function. This suggests IMF is important in
the development of exercise intolerance, an outcome experienced by a large number of cancer survivors.
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Introduction
Peak exercise capacity (VO2 peak) is reduced by an
average 20% among cancer survivors who received
potentially cardiotoxic treatment for their cancer [1].
According to the Fick equation, VO2 peak is a function of
cardiac output and the arterio-venous oxygen (a-VO2)
difference, a measure indicating the ability of the periph-
ery to extract oxygen from the circulating blood [2].
Given the association between anthracycline-based

chemotherapy and reduced left ventricular ejection frac-
tion (LVEF), research in cancer survivors has predomin-
antly focused on the role of cardiac dysfunction in
reduced exercise capacity as opposed to factors that may
impact the a-VO2 difference.
However, in non-cancer populations reductions in the

exercise-associated a-VO2 difference predicts reduced
VO2 peak [3]. Adipose tissue, particularly intermuscular
fat (IMF), is metabolically active and competes with skel-
etal muscle for tissue perfusion and oxygen consumption
[4, 5]. A study in heart failure patients supported this
notion, showing that the ratio of intermuscular fat (IMF)
to skeletal muscle (SM) predicted reductions in VO2peak

[5]. Moreover, emerging data shows that IMF accumu-
lates during cancer treatment [5]. The finding that IMF
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increases over the same period during which exercise
capacity is reduced led us to evaluate the relationship
between the IMF:SM ratio in paraspinal skeletal muscles
and VO2 peak in cancer survivors.

Methods
We enrolled 14 cancer survivors > 12-months after
receipt of anthracycline-based chemotherapy, who were
matched on age, gender, and body mass index (BMI) to
14 individuals without cancer serving as non-cancer
comparators. This matching ensured that cancer survi-
vors and non-cancer comparators were < 1 unit apart on
BMI and age, and that the range of values was within 1
and 2 units, respectively. Results on these participants
have been presented in an International forum with the
Society for Cardiovascular Magnetic Resonance [6].
Cancer survivors were identified from the hematology
and oncology clinics at the Comprehensive Cancer Center
at Wake Forest Health Sciences in Winston-Salem, North
Carolina. The cancer survivors and non-cancer compara-
tors had no prior myocardial infarction, heart failure, or
other prior cardiovascular event. The exclusion criteria for
cancer survivors and non-cancer comparators were
contraindication for magnetic resonance imaging (MRI),
including a pacemaker, defibrillator, or other implanted
electronic devices; inability to perform exercise treadmill
testing; pregnancy; claustrophobia; acute illness or injury
related to walking briskly or running on a treadmill; or in-
capability to provide informed consent. All participants
provided informed consent. This study was approved by
the Institutional Review Board of the Wake Forest Univer-
sity School of Medicine.
According to previously published techniques [7], all

participants underwent abdominal MRI with determin-
ation of IMF and SM in the paraspinal muscles, and
subcutaneous, intraperitoneal, and retroperitoneal fat.
Images were acquired with an axial non-contrast T1
weighted MRI scan positioned at the level of the second
lumber vertebra (L2) using a 5-mm thick slice, a 256 ×
256 matrix, and a 180° flip angle. TomoVision SliceO-
matic version 5.0 was used to measure muscle and adi-
pose tissue depots (Fig. 1). A MRI analyst manually
separated muscle and fat using reproducible, previously
described methods [5]. Briefly, the area of each adipose
and muscle compartment was calculated as number of
pixels multiplied by pixel surface area. IMF was defined
as the adipose tissue visible by MRI within the boundary
of the muscle fascia.
At the time of IMF acquisition, LVEF was measured

from a series of cine white blood images (8 mm thick
with 2 mm gap, temporal resolution 40 msec, field of
view 36 cm, and 256 × 128 matrix) spanning the left
ventricular (LV) base to apex acquired during 6 to 8-s of
breath-holding. LV volumes were determined using a

modified Simpson’s rule calculation, and the LVEF was
determined by subtracting the LV end-systolic volume
from the LV end-diastolic volume and dividing by the
LV end-diastolic volume [7]. Images were analyzed by
individuals blinded to all participant characteristics and
other testing results.
After acquiring images to measure LV function at rest

and paraspinal fat, each participant underwent a cardio-
pulmonary exercise treadmill stress test (CPET) measur-
ing VO2 peak. For this, participants performed a treadmill
test according to the Bruce protocol or modified Bruce
protocol (depending on fitness level) to the point of
maximal exercise as identified by trained staff who were
blinded to their survivorship or non-cancer status.
Immediately after attaining peak exercise, participants
transferred back to the scanner and underwent acquisi-
tion of LV function within 50 s of exercise cessation,
henceforth called exercise-associated LVEF.
Prior to MRI, each participant completed the Godin

Leisure Time Physical Activity Questionnaire to ascer-
tain self-reported physical activity [8]. This questionnaire
measures the frequency of strenuous, moderate, and
mild exercise performed during a typical 7 day period
and is reported in times per week of exercise > 15min in
duration. Participants also completed the functional
assessment of cancer therapy: fatigue (FACT–F) ques-
tionnaire, a 13-item questionnaire developed to assess
fatigue in cancer patients over the last seven days [9].
Scores range from zero to 52 with a higher score indicat-
ing lower fatigue levels. A categorical variable indicating
the number of CVD co-morbidities was created based
on the presence of a) coronary artery disease, b) dia-
betes, and c) hypertension (using resting blood pressure
and current use of antihypertensive medications).
Control and cancer patient groups were compared on

baseline characteristics using 2-sample t-tests for con-
tinuous measures and Fisher’s exact tests for binary
measures. Next, Pearson correlation coefficients were
estimated to examine the correlation between peak VO2

measures and intermuscular fat to skeletal muscle ratio
separately for control and cancer patients. These correla-
tions were estimated unadjusted, and adjusted individu-
ally for resting LVEF, exercise-associated LVEF, BMI,
subcutaneous fat, and intraperitoneal fat.

Results
Five men and nine women were included in each group.
Cancer survivors and controls were of similar age (54 ±
17 and 54 ± 15 years) and BMI (27 ± 4 and 26 ± 4),
respectively. Eight and six of the cancer survivors had
breast cancer and lymphoma, respectively, with an aver-
age cumulative received dose of 327 ± 139 mg/m2 in
doxorubicin equivalents [10]. The proportion of partici-
pants with CVD co-morbidities was similar across the
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two groups, with six cancer survivors and four non-cancer
comparators reporting 1+ CVD co-morbidity (p = 0.20).
Cancer survivors and non-cancer comparators were
similar with respect to self-reported fatigue (46 ± 6
and 48 ± 3, respectively; p = 0.28) and times per week
of engagement in mild (3.5 ± 2.5 and 3.4 ± 3.0, re-
spectively; p = 0.91) and moderate exercise (3.4 ± 2.4
and 2.0 ± 1.8, respectively p = 0.12), but differed in fre-
quency of self-reported strenuous physical activity
(1.5 ± 1.9 and 3.8 ± 2.0, respectively; p < 0.01). Cancer
survivors post-anthracycline-based treatment had mar-
ginally lower resting LVEF (53 ± 6 and 57 ± 7, respect-
ively; p = 0.07) and exercise-associated LVEF (61 ± 9
and 67 ± 8, respectively; p = 0.09) compared to
non-cancer comparators.
VO2 peak was 22% lower in cancer survivors versus

non-cancer comparators (25.7 ± 7 and 34.3 ± 10.3 ml/kg/
min, respectively; p = 0.005). Compared to controls,
cancer survivors trended toward more paraspinal IMF
(13.9 ± 5.6 and 11.7 ± 4.3 cm2, respectively; p = 0.11) and
a higher IMF:SM ratio (0.26 ± 0.10 and 0.22 ± 0.10, re-
spectively; p = 0.13). Among all participants, VO2 peak

was inversely correlated with IMF:SM (p < 0.001), and
persisted after adjustment for LVEF, CVD-comorbidities,
and other depots of adipose tissue (p < 0.0001 to 0.007;
Table 1). These inverse correlations were seen in cancer
survivors and non-cancer comparators separately (r = −
0.545, p = 0.04; r = − 0.721, p = 0.004, respectively). The
correlations between IMF:SM and VO2 peak in both
cancer survivors and non-cancer comparators persisted
after adjustment for the same variables, as correla-
tions remained above 0.50 for cancer survivors and
above 0.59 for non-cancer comparators. Specifically,

the correlations between IMF:SM and VO2 peak

remained after adjustment for resting LVEF (p = 0.04;
p = 0.004, respectively), for exercise-associated LVEF
(p = 0.06; p < 0.001, respectively), and for CVD risk
factors (p = 0.08; p = 0.003, respectively). The correlations
also persisted after accounting for body composition mea-
sures of BMI (p = 0.04; p = 0.007, respectively), intraperito-
neal fat (p = 0.05; p = 0.03, respectively); and subcutaneous
fat (p = 0.08; p = 0.008, respectively).

Discussion
To our knowledge, this is the first report that IMF:SM is
correlated with reduced VO2 peak in cancer survivors.
This finding occurred in the context of a study showing
reduced exercise capacity in cancer survivors versus
matched non-cancer comparators, with marginal differ-
ences in resting and exercise-associated LVEF. In
addition, we observed a marginal difference in IMF in
cancer survivors versus non-cancer comparators. Taken
together, our findings suggest that IMF:SM as well as
potential decrements in LVEF, may contribute to
reduced exercise capacity in cancer survivors. This
concept of involvement of both skeletal muscle and
cardiovascular factors in reduced exercise capacity is
consistent with the literature in exercise intolerance of
heart failure with preserved ejection fraction (HFpEF)
and the literature in exercise capacity after cancer treat-
ment [11, 12]. Our finding of a correlation between
IMF:SM and exercise intolerance is strengthened by
results showing that the relationship between IMF:SM
and VO2 peak was not attenuated by adjustment for
visceral fat, CVD co-morbidities, or by resting LVEF or
immediately post-exercise measurements of LVEF.

Fig. 1 The intermuscular fat of paraspinal muscles, depicted from MRI images of increased IMF (green) relative to SM (red) in a cancer survivor
with reduced exercise capacity (left) and a control participant with normal exercise capacity (right)
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Prior studies have reported findings of an inverse
correlation between IMF:SM and exercise capacity in
non-cancer populations, similar to what our study ob-
served. Notably, in 38 HFpEF patients, thigh IMF:SM
was the strongest predictor of reduced VO2peak of all
body composition factors investigated, including sub-
cutaneous fat, total thigh area, and thigh compart-
ment area [5]. Our study focused on paraspinal IMF
in the abdominal region because abdominal images
are acquired frequently to stage a variety of cancers,
and prior studies have used these images to assess
cachexia [13]. In addition, the paraspinal muscles are
well seen in abdominal MRI scans, along with depots
of visceral and subcutaneous fat [14]. This allows one
to distinguish ill effects of IMF relative to these other
fat depots. Prior studies have shown that IMF has
worse health impacts than subcutaneous fat poten-
tially due to its role in impairing mitochondrial func-
tion, promoting muscle fibrosis, and competing with
muscle for oxygen perfusion [4, 5].
While muscle wasting during cancer treatment has

been appreciated for some time, less attention has been
paid to changes in muscle composition. Two recent
studies in cancer survivors have shown that muscle
composition changes during chemotherapy. In 200 lung
cancer patients, abdominal IMF increased by 7% after
first-line chemotherapy in (P < 0.001) [15]. In 73 meta-
static breast cancer patients treated with taxane-based
chemotherapy, muscle attenuation decreased (indicating
increased accumulation of IMF) during chemotherapy
(P = 0.03) [16]. The importance of IMF in cancer survi-
vors was shown by a 2017 study reporting that muscle
attenuation was the strongest risk factor (of all body
composition measures) for increased mortality (Hazard
Ratio = 2.0 [1.3–3.1]) in 166 metastatic breast cancer pa-
tients [17]. Thus, prior research provides support for an
accumulation of IMF during treatment and its impact
on survival.

One limitation of the current study is its small sample
size. We attempted to mitigate the impact of a small
sample through the design of our study. Namely, we per-
formed matching of cancer survivors to non-cancer
comparators on age, gender, and BMI, factors most likely
to impact VO2 peak. This efficient design reduced poten-
tial bias by minimizing the impact of confounding in our
study sample, and provided for more precise correlation
estimates. A second limitation relates to the timing of
ascertainment of our exposures and outcomes as we
were unable to examine changes in IMF:SM and VO2

peak during cancer treatment. Future studies could assess
whether IMF changes prior to, during, or after cancer
treatment impact changes in VO2 peak. The change in
IMF during cancer treatment is of particular interest due
to the documented reduction in exercise capacity during
this period in past studies [1, 18, 19].
Strengths of our study include its use of MRI to ascer-

tain IMF area which allows for a direct assessment of
intermuscular fat as shown in Fig. 1, whereas computed
tomography (CT) scans calculate muscle attenuation
which indirectly assesses IMF [20]. Another strength is
the assessment of LVEF which allows for an examination
of both cardiac and peripheral factors in relation to
exercise capacity in cancer survivors compared to
non-cancer comparators.
In summary, our findings suggest that IMF accumu-

lation is an important contributor to reduced VO2

peak among cancer survivors and are in accord with
findings in other disorders associated with reduced
VO2 peak [5, 21]. These findings suggest that skeletal
muscle abnormalities, in addition to heart dysfunc-
tion, contribute to the profound reductions in
exercise capacity in cancer survivors, and thus need
to be evaluated. Should these findings be replicated,
this would provide insight into the pathophysiology of
the severe, persistent exercise intolerance in cancer
survivors and provide novel therapeutic targets.

Table 1 Correlations of VO2 peak with IMF:SM in cancer survivors and non-cancer comparators

IMF:SM correlation with VO2 peak

Adjusted for: Overall study population
(n = 28)

Cancer Survivors
(n = 14)

Non-cancer comparators
(n = 14)

r p-value r p-value r p-value

N/Aa −0.67 0.0001 −0.54 0.044 −0.72 0.004

Resting LVEF % −0.70 < 0.0001 −0.59 0.035 −0.74 0.004

Exercise-associated LVEF % −0.71 < 0.0001 −0.54 0.055 −0.85 < 0.001

CVD risk factors −0.64 0.0003 −0.50 0.083 −0.75 0.003

BMI −0.67 0.001 −0.58 0.040 −0.71 0.007

SC fat −0.61 0.007 −0.50 0.080 −0.70 0.008

IP fat −0.60 0.001 −0.56 0.047 −0.59 0.033
aN/A: Correlation is not adjusted for any factors
LVEF left ventricular ejection fraction, IMF intermuscular fat, SM skeletal muscle, BMI body mass index, SC subcutaneous, IP intraperitoneal
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